首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26468篇
  免费   570篇
  国内免费   1448篇
测绘学   1498篇
大气科学   2426篇
地球物理   5011篇
地质学   12694篇
海洋学   1238篇
天文学   1781篇
综合类   2340篇
自然地理   1498篇
  2024年   3篇
  2023年   44篇
  2022年   124篇
  2021年   136篇
  2020年   91篇
  2019年   116篇
  2018年   4860篇
  2017年   4127篇
  2016年   2695篇
  2015年   346篇
  2014年   224篇
  2013年   157篇
  2012年   1095篇
  2011年   2840篇
  2010年   2140篇
  2009年   2415篇
  2008年   1981篇
  2007年   2435篇
  2006年   121篇
  2005年   262篇
  2004年   436篇
  2003年   468篇
  2002年   291篇
  2001年   89篇
  2000年   122篇
  1999年   122篇
  1998年   113篇
  1997年   88篇
  1996年   88篇
  1995年   94篇
  1994年   66篇
  1993年   61篇
  1992年   41篇
  1991年   28篇
  1990年   20篇
  1989年   23篇
  1988年   21篇
  1987年   11篇
  1986年   12篇
  1985年   9篇
  1984年   5篇
  1983年   8篇
  1982年   5篇
  1981年   23篇
  1980年   20篇
  1979年   1篇
  1976年   7篇
  1958年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
Three of DRASTIC’s parameters (Depth to Water, Soil Media, and Topography) were modified and another parameter was added (land use/land cover) to the model to determine the potential impact on groundwater from Confined Animal Feeding Operations (CAFO) manure lagoon settings and manure application as fertilizer. Williams County is a mostly agricultural county located in northwest Ohio, USA. It currently has three CAFOs, all dairy, with the possibility of the construction of a multi-million chicken egg CAFO in the near future. A Geographic Information System (GIS) was utilized to modify the Ohio Department of Natural Resources (ODNR) DRASTIC map for the county to fully assess the county-wide pollution potential of CAFOs. The CAFO DRASTIC map indicates that almost half of Williams County has elevated groundwater pollution potential. The rest of the county, primarily the southeast corner, has lower CAFO groundwater pollution potential. Future CAFO development within the county should focus on the southeastern portion of the county where the groundwater table is deeper, and the aquifer is composed of shale substrate with low hydraulic conductivity. The CAFO DRASTIC results are intended to be used as a screening tool and are not to replace site-specific hydrogeologic investigations.  相似文献   
132.
Geologic storage of CO2 is expected to produce plumes of large areal extent, and some leakage may occur along fractures, fault zones, or improperly plugged pre-existing wellbores. A review of physical and chemical processes accompanying leakage suggests a potential for self-enhancement. The numerical simulations presented here confirm this expectation, but reveal self-limiting features as well. It seems unlikely that CO2 leakage could trigger a high-energy run-away discharge, a so-called “pneumatic eruption,” but present understanding is insufficient to rule out this possibility. The most promising avenue for increasing understanding of CO2 leakage behavior is the study of natural analogues.  相似文献   
133.
134.
A screening and ranking framework (SRF) has been developed to evaluate potential geologic carbon dioxide (CO2) storage sites on the basis of health, safety, and environmental (HSE) risk arising from CO2 leakage. The approach is based on the assumption that CO2 leakage risk is dependent on three basic characteristics of a geologic CO2 storage site: (1) the potential for primary containment by the target formation; (2) the potential for secondary containment if the primary formation leaks; and (3) the potential for attenuation and dispersion of leaking CO2 if the primary formation leaks and secondary containment fails. The framework is implemented in a spreadsheet in which users enter numerical scores representing expert opinions or published information along with estimates of uncertainty. Applications to three sites in California demonstrate the approach. Refinements and extensions are possible through the use of more detailed data or model results in place of property proxies.  相似文献   
135.
This paper reports a preliminary investigation of CO2 sequestration and seal integrity at Teapot Dome oil field, Wyoming, USA, with the objective of predicting the potential risk of CO2 leakage along reservoir-bounding faults. CO2 injection into reservoirs creates anomalously high pore pressure at the top of the reservoir that could potentially hydraulically fracture the caprock or trigger slip on reservoir-bounding faults. The Tensleep Formation, a Pennsylvanian age eolian sandstone is evaluated as the target horizon for a pilot CO2 EOR-carbon storage experiment, in a three-way closure trap against a bounding fault, termed the S1 fault. A preliminary geomechanical model of the Tensleep Formation has been developed to evaluate the potential for CO2 injection inducing slip on the S1 fault and thus threatening seal integrity. Uncertainties in the stress tensor and fault geometry have been incorporated into the analysis using Monte Carlo simulation. The authors find that even the most pessimistic risk scenario would require ∼10 MPa of excess pressure to cause the S1 fault to reactivate and provide a potential leakage pathway. This would correspond to a CO2 column height of ∼1,500 m, whereas the structural closure of the Tensleep Formation in the pilot injection area does not exceed 100 m. It is therefore apparent that CO2 injection is not likely to compromise the S1 fault stability. Better constraint of the least principal stress is needed to establish a more reliable estimate of the maximum reservoir pressure required to hydrofracture the caprock.  相似文献   
136.
This paper presents results of a small scale study that utilized particle-tracking techniques to evaluate transport of river water through an alluvial aquifer in a bank infiltration testing site in El Paso, Texas, USA. The particle-tracking survey was used to better define filtration parameters. Several simulations were generated to allow visualization of the effects of well placement and pumping rate on flow paths, travel time, the size of the pumping influence zone, and proportion of river-derived water and groundwater mixing in the pumping well. Simulations indicate that migration of river water into the aquifer is generally slow. Most water does not arrive at the well by the end of an 18-day pumping period at 0.54 m3/min pumping rate for a well located 18 m from the river. Forty-four percent of the water pumped from the well was river water. The models provided important information needed to design appropriate sampling schedules for bank filtration practices and ensured meeting adequate soil-retention times. The pumping rate has more effect on river water travel time than the location of the pumping well from the river. The examples presented in this paper indicate that operating the pumping well at a doubled distance from the river increased the time required for the water to travel to the well, but did not greatly change the capture zone.  相似文献   
137.
The 26 December 2004-tsunami has deposited sediments in the Pichavaram mangrove ecosystem, east coast of India. Ten surface and three core sediment samples were collected within 30 days of the event and analyzed for nutrients. Water samples were also analyzed to see the impact of tsunami on the geochemical behavior of nutrients. An increase in the concentration of various nutrients namely nitrate and phosphate was observed. The geochemistry of the mangrove forest was observed to be influenced by a number of factors like rapid increase of aquaculture farms, agricultural practices and the anthropogenic discharge from the nearby-inhabited areas. Further the sediment column was disturbed due to energetic tsunami waves, which has caused a sheer increase in the dissolved oxygen in water. As a result, the change in the redox potential has resulted in change in the nutrients absorbed/associated with the sediments. In addition, role of retreating water after tsunami on the nutrient geochemistry was also evaluated.  相似文献   
138.
The shallow water wave simulation model-SWAN incorporated with a simple fine sediment erosion model is applied to Hangzhou Bay, China, to model the horizontal distribution of the maximum bottom orbital velocity and corresponding fine sediment erosion rates induced by: (1) southeasterly steady winds (5, 20 and 30 m/s), (2) southwesterly steady winds (5 and 20 m/s); (3) northwesterly steady winds (5 and 20 m/s); (4) east-southeasterly steady winds (5 and 20 m/s); (5) easterly steady winds (5 and 20 m/s) under closed and unclosed boundaries; and (6) unsteady winds during the slack water periods. Results suggest: (1) the steady wind wave-induced maximum bottom orbital velocities and corresponding fine sediment erosion rates generally increased with the increasing steady winds; (2) closed and unclosed boundary conditions had more significant influences on modeled fine sediment erosion rates under 5 m/s easterly steady winds than 20 m/s; and (3) steady and unsteady wind wave-induced maximum bottom currents could be significant in eroding fine sediment bed in Hangzhou Bay. The results show implications for geomorphology, sedimentology, coastal erosion, and environmental pollution mitigation in Hangzhou Bay.  相似文献   
139.
The control of polluted surface runoff and the assessment of possible impacts on groundwater is a concern at the local and regional scale. On this background, a study investigates possible impacts of organic and inorganic pollutants (including bacteria) originating from a permeable asphalt parking lot on the water quality immediately beneath it. The functioning of the permeable pavement, including clogging and restricted vertical percolation, was also evaluated. Four nested sample ports (shallow and deep) were installed below low- and high-traffic areas, including one port outside the parking lot. At least initially there was a good hydraulic connection between the parking surface and the shallow sample ports. The presence of a geotextile layer at the base of the parking lot structure, however, was identified in lab tests as one factor restricting vertical percolation to the deeper ports. Clogging of the permeable surface was most pronounced in heavy traffic areas and below snow pile storage areas. Corroborated by high electric conductivity and chloride measurements, sand brought in by cars during winter was the principal cause for clogging. No bacteria or BOD were found in percolating water. Polycyclic aromatic hydrocarbons (PAH) were present at concentrations near minimum detection limit. Nutrients (nitrate and phosphate) were being leached into the ground via the permeable parking lot surface at annual flux rates of 0.45–0.84 g/m2/year. A multi-species tracer test demonstrated a retention capacity of the permeable parking lot structure of >90% for metals and 27% for nutrients, respectively.  相似文献   
140.
Three discriminant function models are raised and cross-compared in order to distinguish geochemical patterns characteristic for the Drava River floodplain sediments. Based on data representing total element concentrations in samples collected from alluvium (A), terrace (T), and unconsolidated bedrock (B) at the border of a floodplain, four element clusters emerged accounting for discrimination between the referred groups of sediments. The most prominent is contaminant/carbonate cluster characteristic for alluvium. The other two are: silicate cluster typical for unconsolidated geological substrate (Neogene sedimentary rocks); and naturally dispersed heavy metal cluster separating terrace from the former two groups. Models introducing depth intervals and single profiles as grouping criteria reveal identical sediment-heavy metal matrices. The second important issue of this paper is possibility of reclassification of samples originally assigned to one of the a priori defined groups of sediments, based on established geochemical pattern. The mapped geological units can be reconsidered by the post hoc assignments to a different group if geological border between alluvium and terrace or between terrace and bedrock can not be established geologically with absolute certainty.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号